
 railML® interface 
 Theme overview 

© iRFP Page 1 Date: 08.12.2014 

 
Selected examples for railML® format (Extract) 
 
RailML version: 2.0-2.2 
First issue: July 2010 
Elapsed issues: 03.08.2010, 19.03.2012, 26.03.2012, 16.04.2012, 22.05.2012, 16.01.2013 
Current issue: 08.12.2014 
 
This document contains an  arbitrary selection of typical cases of railway timetables and 
their indication with railML. This is by far not complete. The possibilities of railML are much 
more complex than can be shown here. 
 
This is a translation of the corresponding German example selection. Due to normal the gap 
between the time necessary to translate and the spare time, there are less examples here 
than in the German version. So, if you miss a certain example which is in the German ver-
sion, please don’t hesitate to contact iRFP, we will try to translate it in a short time. 
 
As far as not named otherwise, the examples here are valid for railML schema versions from 
2.0. Some examples refer to attributes which were introduced in versions after 2.0 only. This 
will be indicated. 
 
Normally the files from which the examples come are available at 
 

 www.irfp.de/deutsch/fbs/schnittstelle_railml.html 
 

as railML files as well as PDF files for download. 
 

Theme overview 
 
Theme overview .................................................................................................................... 1 
Different stop types ............................................................................................................... 2 
Different station names .......................................................................................................... 3 
Train types, categories, products, and passenger usage ....................................................... 4 
Mileage of tracks and lines .................................................................................................... 6 
On trains and train parts in general........................................................................................ 7 
Train coupling and sharing .................................................................................................... 8 
Midnight overruns in RailML .................................................................................................11 
Header information (Dublin Core Metadata Element Set) .....................................................15 
 



 railML® interface 
 Different stop types 

© iRFP Page 2 Date: 08.12.2014 

 

Different stop types 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The attribute stopOnRequest is to be declared only if commercial=true. 
The attribute operationalStopOrdered1 is to be declared only if commercial=false. 
 

It is not intended to write different stop types at the same station. Concerning the usualities of 
railway operation: 
- If there are reasons for both a traffic stop and an operational stop, a traffic stop shall be 

declared. 
- If an operational stop becomes necessary by IM as well as by TOC, it will be declared as 

an operational stop by TOC (ordered operational stop). 
 

A stop on request is a special case of a traffic stop. 
 

If a stop does not apply to all operating days of the train - i. e. the train runs through at sev-
eral days - the attribute operatingPeriodRef can be used to reduce the operating days of the 
stop against the operating days of the train. However, be aware that other given attributes as 
run times, supplements etc. become incorrect by this practice. Also, it can only be used to 
change between a certain stop and run through but not to switch between two different stop 
types depending on the days of operation. Therefore, many applications would probably split 
the train into two instead of using operatingPeriodRef. 

                                                
1 The attribute operationalStopOrdered has been introduced with railML 2.2. 

Stop to alight only 
<ocpTT ocpRef='ocp_DN' ocpType='stop'> 
  <times scope='scheduled' arrival='12:58:23' departure='13:00:23'/> 
  <stopDescription commercial='true' stopOnRequest='false' onOff='off'> 
    <stopTimes minimalTime='PT2M0S'/> 
  </stopDescription> 
</ocpTT> 

Stop on request / on demand 
<ocpTT ocpRef='ocp_DIG' ocpType='stop'> 
  <times scope='scheduled' arrival='13:33:26' departure='13:33:56'/> 
  <stopDescription commercial='true' stopOnRequest='true'> 
    <stopTimes minimalTime='PT12S'/> 
  </stopDescription> 
</ocpTT> 

General traffic stop 
<ocpTT ocpRef='ocp_DRAG' ocpType='stop'> 
  <times scope='scheduled' arrival='12:30:32' departure='12:31:02'/> 
  <stopDescription commercial='true' stopOnRequest='false'> 
    <stopTimes minimalTime='PT30S'/> 
  </stopDescription> 
</ocpTT> Operational stop infrastructure 

<ocpTT ocpRef='ocp_DKT' ocpType='stop'> 
  <times scope='scheduled' arrival='12:51:25' departure='12:51:55'/> 
  <stopDescription commercial='false' operationalStopOrdered='false'> 
    <stopTimes minimalTime='PT30S'/> 
  </stopDescription> 
</ocpTT> 

Operational stop by TOC 
<ocpTT ocpRef='ocp_DKT' trackInfo='3' ocpType='stop'> 
  <times scope='scheduled' arrival='12:45:52' departure='12:59:18'/> 
  <stopDescription commercial='false' operationalStopOrdered='true'> 
    <stopTimes minimalTime='PT30S'/> 
  </stopDescription> 
</ocpTT> 



 railML® interface 
 Different station names 

© iRFP Page 3 Date: 08.12.2014 

 

Different station names 

 
 
 
 
 
 
 
A different name for operational duties can be addressed with operationalName. With traf-
ficName, several alternatives for publishing can be addressed. These can differ by language 
and/or character set. 
 
The attribute xml:lang is optional and seldom used nor necessary. If the attribute is used, the 
language codes from ISO 639 are to be written. 
 

As the example shows, the difference between the 
station names can also lie in the character set 
alone and not in the language. In the example, 
both names a modern Greek but once with greek 
and once with latin letters. 
 
 
 
 
 

 
 
 
 

 
 
 
 
 
 
 

<ocp id='ocp_DBZ' abbreviation='DBZ' number='8010026' name='Bautzen'> 
  <propOperational … /> 
  <propService … /> 
  <propOther> 
    <additionalName value='Budyšin' type='trafficName' xml:lang='hsb'/> 
  </propOther> 
  <area name='Bautzen, Stadt' number='14272010' zip='2625'/> 
  <geoCoord coord='14.43250 51.17220 201.47'/> 
</ocp> 

<ocp id='ocp_DG' abbreviation='DG' number='8010131' name='Görlitz'> 
  <propOperational … /> 
  <propService … /> 
  <propOther> 
    <additionalName value='Bft. Görlitz Pbf.' type='operationalName'/> 
    <additionalName value='Zhorjelc' type='trafficName' xml:lang='pl'/> 
  </propOther> 
  <area name='Görlitz, Stadt  KfS' number='14263000' zip='2826'/> 
  <geoCoord coord='14.98306 51.15072 209.42'/> 
</ocp> 

<operationControlPoints> 
  <ocp id='ocp_ΠΕΙΡ' abbreviation='ΠΕΙΡ' name='ΠΕΙΡΑΙΑΣ'> 
    <propOperational … /> 
    <propService … /> 
    <propOther> 
      <additionalName value='Πειραιεύς' type='trafficName' xml:lang='grc'/> 
      <additionalName value='ΠΕΙΡΑΙΑΣ' type='trafficName' xml:lang='ell'/> 
      <additionalName value='PIREAS' type='trafficName' xml:lang='ell'/> 
      <additionalName value='Piraeus' type='trafficName' xml:lang='en'/> 
      <additionalName value='Piräus' type='trafficName' xml:lang='de'/> 
      <additionalName value='Le Pirée' type='trafficName' xml:lang='fr'/> 
    </propOther> 
  </ocp>   <ocp id='ocp_ΑΘΗΝ' abbreviation='ΑΘΗΝ' name='ΑΘΗΝΑ'> 

    <propOperational … /> 
    <propService … /> 
    <propOther> 
      <additionalName value='Ἀθῆναι' type='trafficName' xml:lang='grc'/> 
      <additionalName value='ΑΘΗΝΑ' type='trafficName' xml:lang='ell'/> 
      <additionalName value='ATHINA' type='trafficName' xml:lang='ell'/> 
      <additionalName value='Athens' type='trafficName' xml:lang='en'/> 
      <additionalName value='Athen' type='trafficName' xml:lang='de'/> 
      <additionalName value='Athènes' type='trafficName' xml:lang='fr'/> 
    </propOther> 
  </ocp> 



 railML® interface 
 Train types, categories, products, and passenger usage 

© iRFP Page 4 Date: 08.12.2014 

Train types, categories, products, and passenger usage 
Currently there is no attribute at <train> nor <trainPart> where one can directly deduce from 
whether a train (part) is for passengers or freight. Rather, the attribute categoryRef of the 
element <trainPart> has to be „traced back“: 
 
<trainPart id='tp_222' name='222' line='EC 200' trainNumber='222' processStatus='planned' 
     timetablePeriodRef='ttp_2020_21' categoryRef='cat_EC'> 
 
The categories are summarised in an own list at <timetable>. There, the attributes trai-
nUsage and deadRun can be used to determine whether a type of train normally is used for 
passengers or freight: 
 
    <categories> 
      <category id='cat_SEV' code='SEV' name='Schienenersatzverkehr'/> 
      <category id='cat_OBB' code='OBB' name='Oberlausitz-Bahn' trainUsage='passenger'/> 
      <category id='cat_EC' code='EC' name='EuroCity' description='Schnellfahrende Reisezüge 

im internationalen Verkehr mit besonderem Komfort' trainUsage='passenger'/> 
      <category id='cat_OBE' code='OBE' name='Oberlausitz-Express' trainUsage='passenger'/> 
      <category id='cat_OBC' code='OBC' name='Oberlausitz-City' trainUsage='passenger'/> 
      <category id='cat_D' code='D' name='Schnellzug mit Durchgangswagen' description= 

'Schnellfahrende Reisezüge des Fernverkehrs' trainUsage='passenger'/> 
      <category id='cat_Os' code='Os'/> 
      <category id='cat_CS' code='CS' name='Ganzzug' trainUsage='goods'/> 
      <category id='cat_S' code='S' name='Stadtschnellbahn' description='Reisezüge des  

linienbezogenen Ballungsverkehrs mit Systemhalten im dichten  
Takt unter S-Bahn-Tarifanwendung' trainUsage='passenger'/> 

      <category id='cat_FZ' code='FZ' name='FrachtZubringer' trainUsage='goods'/> 
      <category id='cat_Lt' code='Lt' name='Leertriebwagen' deadrun='true'/> 
      <category id='cat_P' code='P' name='Personenzug' description='Reisezüge des  

Binnenverkehrs der ÖBB auf DB-Infrastruktur und Züge der  
ÖBB und ČD im Korridorverkehr' trainUsage='passenger'/> 

    </categories> 
 
It is up to the reading software how it deals with such attributes missing. It can opt for a de-
fault case, or ask the user, or force the usage of these attributes e. g. by providing an error 
message. 
 
The attribute categoryRef escpecially of <trainPart> references to train categories which are 
commonly known as products in practice. They are normally used for publishing. It has to be 
noted that a train can consist of more than one product at the same time because different 
train parts may reference different products (see also section On trains and train parts in 
general (English)). This really happens in practice e. g. in Germany between Erfurt and Plaue 
(Thüringen) where trains of Erfurter Bahn (product EB) and of Süd-Thüringen-Bahn (product 
STB) often run coupled, or at ÖBB where sometimes trains with the product name RailJet 
have additional carriages for peak periods placed as IC. 
 
In contrary to products there is the operational train category. (In UK this is part of the head 
code of a train at least in a certain sense.) It is something rather internal, not to be published. 
Also, a train can have only one operational category at the same time. For this kind of train 
categories, there is the attribute categoryRef at the element <train> in RailML. It is sub-
placed below <trainPartSequence> because the operational category may change between 
different sections of the train’s route. The many long-distance trains which run empty before 
and after their published route are examples from practice for such changes. In Germany, 
this is widely common between Berlin’s stations Grunewald, Lehrter Bahnhof (main station), 
and Rummelsburg (stabling station): 
 
      <train id='tro_141' type='operational' trainNumber='141' scope='primary'> 
        <trainPartSequence sequence='1' categoryRef='cat_IC'>  <!-- IC Schiphol - Berlin --> 
          <trainPartRef ref='tp_141_XNSP-BHF' position='1'/> 
        </trainPartSequence> 
        <trainPartSequence sequence='2' categoryRef='cat_Lr'>   <!-- empty run to stable --> 
          <trainPartRef ref='tp_141_BHF-BRGBA' position='1'/> 
        </trainPartSequence> 
      </train> 
 
The attribute categoryRef at <train> for the operational category is normally used at opera-
tional trains only (elements <train> with occurrence type='operational'). 
 



 railML® interface 
 Train types, categories, products, and passenger usage 

© iRFP Page 5 Date: 08.12.2014 

Currently there is no explicit distinction between product and operational category in RailML 
– an element <category> can represent an operational category (i. e. referenced by a 
<train>) as well as a product (i. e. referenced by a <trainPart>). 
 
Here again it is up to the reading software how to deal with potential contradictions of this 
contextual redundancy in case a train (part) is shown e. g. as passenger hauling by its 
<trainPart>.categoryRef and at the same time as non passenger hauling by its 
<train>.categoryRef. It is recommended to “consult” the product for traffic properties (such as 
passenger hauling) and to “consult” the operational category for operational properties 
(which may be for instance categoryPriority). 
 
To explicitly declare a train or train part as passenger hauling, it must stringently reference a 
properly defined <category> by its categoryRef. But, in this relation, it has to be considered 
that sometimes the so-called overriding of places happens. Here, the element <passen-
gerUsage> of <trainPart> is used to override (correct) the place capacities inherited from a 
formation (by the attribute formationRef). If the place capacities are corrected to 0 by this 
method, this included implicitly that the train part cannot be passenger-hauling in a certain 
sense - even if its categoryRef says something else. This method is used e. g. to declare 
some carriages in a train to be closed. (Some carriages = part of the train may normally be 
used by passengers but another train part is closed may be because it does not fit at some 
platform.) 
 
     <trainPart id='tp_xyz' name='141' … categoryRef='cat_IC'> 
        <formationTT formationRef='fmt_abc' … > 
          <passengerUsage> 
            <places category='class1' count='0'/> 
            <places category='class2' count='0'/> 
          </passengerUsage> 
        </formationTT> 
 
Though it alternatively can be expressed by assigning an „empty-run product“ to the this train 
part, it is not always common to do so. Sometimes it is up to the custom of the user and 
therefore cannot be forced by the writing software. Also, normally there should not be all the 
train set to 0 places but some of its parts only. Anyway, it is recommended for reading soft-
ware when determining such properties as passenger, freight, or public to check any possi-
ble overriding of places too and possibly to act according. 
 



 railML® interface 
 Mileage of tracks and lines 

© iRFP Page 6 Date: 08.12.2014 

Mileage of tracks and lines 
Due to historical reasons, the mileage (or "metering") of the tracks of a line often is not con-
tinuous. It can have any points of discontinuity ("jump" and/or change of counting direction 
between raising and falling) for instance by geographical corrections / repositioning of a line. 
 

In railML, the practical, historical mileage (written e.g. at mileposts) is named absolute mile-
age. On the contrary, there is the relative mileage (attribute pos) which always has to be 
continuously raising (but not necessarily starting with zero). The relative mileage normally is 
virtual, i.e. not visible at stations or mileposts. To calculate distances, the relative mileage is 
used. Note: The term "mileage" here is used in a very general sense and in spite of its 
measurement unit is defined at kilometers in railML. 
 

A <mileageChange> defines the position of a track where metering of mileage changes. To 
identify the initial mileage valid from the beginning of a track - before the first mileage change 
happens - the attributes pos and absPos of the element <trackTopology>.<trackBegin> are 
used. 
 
The following example contains a track wich 
 (1) first has a falling mileage starting with km 9.430, 
 (2) after 9424 meters, so at abs. km 0.006, it jumps to the new value 23.376 

and raises from there, 
 (3) after 18809 meters (from the beginnng of the line), so at the old abs. km 32.761 
      (= 23376 + 18809 - 9424) it jumps at the new value 33.391 and falls from there. 
 
<track id='tr_11.5107_1' name='OBW-OWT' type='mainTrack'> 
  <trackTopology> 
    <trackBegin id='trn_OBW_11.5107_1' pos='0' absPos='9430'> 
      <macroscopicNode ocpRef='ocp_OBW'/> 
    </trackBegin> 
    <trackEnd id='trn_OWT_11.5107_1' pos='18820' absPos='33380'> 
      <macroscopicNode ocpRef='ocp_OWT'/> 
    </trackEnd> 
    <mileageChanges> 
      <mileageChange id='mch_11.07_0' absPos='9430' pos='0' dir='down'/> 
      <mileageChange id='mch_11.07_1' absPosIn='6' absPos='23376' pos='9424' dir='up'/> 
      <mileageChange id='mch_11.07_2' absPosIn='32761' absPos='33391' pos='18809' dir='down'/> 
    </mileageChanges> 
    <crossSections> 
      <crossSection id='trn_OBW' pos='1290' absPos='8140' ocpRef='ocp_OBW_76A'/> 
      <crossSection id='trn_OSML' pos='3570' absPos='5860' ocpRef='ocp_OSML'/> 
      <crossSection id='trn_OPT' pos='5580' absPos='3850' ocpRef='ocp_OPT'/> 
      <crossSection id='trn_ONKW_H' pos='8930' absPos='500' ocpRef='ocp_ONKW_H'/> 
      <crossSection id='trn_ONKW' pos='9430' absPos='23382' ocpRef='ocp_ONKW'/> 
      <crossSection id='trn_ONKW' pos='10300' absPos='24252' ocpRef='ocp_ONKW_A'/> 
      <crossSection id='trn_ONKO' pos='13460' absPos='27412' ocpRef='ocp_ONKO'/> 
      <crossSection id='trn_OWT_N' pos='17945' absPos='31897' ocpRef='ocp_OWT_N'/> 
    </crossSections> 
  </trackTopology> 
</track> 

 
Line 1 only exists in FBS-RailML (internal version 2.0.5) vorhanden. Please note how the 
elements <trackBegin>, <trackEnd>, and <crossSection> contain the current absolute posi-
tion in their attributes absPos. 
 

The attribute absPosIn specifies the "old" absolute mileage (which is valid up to this mile-
ageChange). This value is redundant so far as it could also be calculated from the previous 
mileage change. 
 

Remark: The values up and down of this attribute relate to numerical interpretation (raising, 
falling = “to count up or down”). Therefore, they differ from the typical usage in British English 
where “up” relates on “direction to London” and “down” relates on “direction away from Lon-
don”. 
 
For more examples, see 
 http://www.wiki.railml.org/index.php?title=IS:mileageChange#Example 

1 2 
3 



 railML® interface 
 On trains and train parts in general 

© iRFP Page 7 Date: 08.12.2014 

 

On trains and train parts in general 
One of the base philosophies of version 2.0 of RailML is to satisfy the many requirements of 
every-day railway operation such as ‘strengthen’ of trains for raised capacity, direct through-
coaches, and even train coupling and sharing. This shall be done by “deconstructing” of 
trains in smallest, atomic fragments. These atomic fragments of trains are called train parts. 
 
The actual train information as times, vehicles a. s. o. are properties of the train parts. A 
<train> structure of RailML only joins train parts to trains (“reconstructs” in the sense of the 
above named “deconstructing”) but, besides this, normally holds no additional information. 
 
While e. g. operating days or no. of vehicles may change during a train’s run, all such proper-
ties of a <trainPart> stay constant. 
 
The RailML element <train> can describe either an operational or a commercial train. This is 
defined by the attribute type which either is operational or commercial. 
 
The characteristic attribute of operational trains is that at one moment there is only one 
train allowed at a section of line track. This train has clearly to be defined by one “primary 
key” (called ‘head code’ or ‘train number’). These aspects partly come from reasons of secu-
rity (as for instance communication between signal boxes). 
 
On the contrary, commercial trains are seen from the customers view. They refer to trains 
as published in public schedules like “Bradshaw’s” or modern electronic medias. There may 
be apparently more than one train simultaneous in one direction of one track of a line. In a 
timetable two coupled trains are shown in two separate columns with the same times. In a 
departure poster there may be two entries with the same departure time and track but bound 
for different directions (both trains splitting at an intermediate station). Concerning this view, 
the term “train” is used in a wider sense. So, such a commercial train does not even need to 
have an engine (e. g. a slip coach). 
 
Each train part normally is used by exactly one operational and one commercial train. 
 
Each train names all its train parts in its element <trainPartRef> with the attributes ref and 
position. A train may consist of more than one train part either in one section or in subse-
quent sections of its route. There may be several elements <trainPartRef> with the same 
position if the corresponding train parts apply in different sections. 
 
Please note that the value of <trainPartRef>.position does not necessarily give the actual 
position in the train. There may be some train parts “missing” due to different operating days. 
 
More than one train part in one section applies for instance with train coupling and sharing. 
More than one train part in subsequent sections applies for instance if the operating days 
change at an intermediate station. 



 railML® interface 
 Train coupling and sharing 

© iRFP Page 8 Date: 08.12.2014 

 

Train coupling and sharing 
With the term train coupling and sharing we describe the situation where two parts of a train 
(nowadays mostly multiple units) run joined at one section and separated at another section 
of line. 
 
This principle is not a special case of modern time but well-known throughout the world of 
railways for a long time. So I will give a few examples only: 
 Due to reasons of infrastructure fee and organisation, you’ll find many cases of train cou-

pling and sharing especially in the today’s German regional traffic. 
 Not only in Germany, also for instance in the UK’s regional traffic we have the trains from 

Glasgow to Mallaig and Oban running joined to a station called A’ Chrìon Làraich… And 
you’ll also find it in Wales but the village names there are even more complicated. 

 The same principle applies to the so-called “Kurswagen” or through-coaches so typical of 
former times. Who knows Agatha Cristie’s Murder on the Orient Express? The murder 
took place in the Calais Coach, and next to that was the Athens Coach which joined the 
train running from Stamboul to Paris in Belgrade. 

 In former times of steam traction in Britain there were slip coaches - a special type of 
direct coach to serve places where the main train was not scheduled to stop. 

 Nowadays, we still have through coaches for instance in the overnight trains from Prague 
and Berlin to Zürich or from Warsaw to Paris and Copenhagen. 

 We even find it in countries which are not famous for railway passenger traffic (or, which 
are even famous for having no railway passenger traffic worth mentioning): The ‘Sunset 
Limited’ New Orleans - Los Angeles (train #1) is joined in San Antonio with ‘Texas Eagle’ 
Chicago - Los Angeles (train #21) and vice versa. 

 
Example 1 
For the sake of readers of UK as well as of the rest of the world (for which A’ Chrìon Làraich 
probably means nothing - as Bischofswerda of my German examples) let’s assume the fol-
lowing example: 

A train leaves London St Pancras bound for Paris and Bruxelles. 
It is split in Lille (capital of French Flanders). 

 
The following RailML extract describes the one operational train which starts in London with 
two train parts, drops off the rear part in Lille and continues its journey with one part only: 
 
<train id='tro_9014' type='operational' trainNumber='9014'> 
  <trainPartSequence sequence='1'> 
    <trainPartRef ref='tp_9014_London-Lille' position='1'/> 
    <trainPartRef ref='tp_9114_London-Lille' position='2'/> 
  </trainPartSequence> 
  <trainPartSequence sequence='2'> 
    <trainPartRef ref='tp_9014_Lille-Paris' position='1'/> 
  </trainPartSequence> 
</train> 
 
The following RailML extract describes the other operational train which starts in Lille and 
runs to Bruxelles: 
 
<train id='tro_9114' type='operational' trainNumber='9114'> 
  <trainPartSequence sequence='1'> 
    <trainPartRef ref='tp_9114_Lille-Bruxelles' position='1'/> 
  </trainPartSequence> 
</train> 

 
So far, we cannot see that the train part which is dropped off the first train in Lille is the same 
train part which forms the second train. In other words, seeing the operational view only, a 



 railML® interface 
 Train coupling and sharing 

© iRFP Page 9 Date: 08.12.2014 

traveller would not know whether he has to change in Lille en route from London to Brux-
elles. Therefore, here come the commercial trains. 
 
The following RailML extract describes the through commercial train from London to Brux-
elles: 
 
<train id='trc_9114' name='9114' type='commercial'> 
  <trainPartSequence sequence='1'> 
    <trainPartRef ref='tp_9114_London-Lille' position='2'/> 
  </trainPartSequence> 
  <trainPartSequence sequence='2'> 
    <trainPartRef ref='tp_9114_Lille-Bruxelles' position='1'/> 
  </trainPartSequence> 
</train> 
 
The following RailML extract describes the through commercial train from London to Paris: 
 
<train id='trc_9014' name='9014' type='commercial'> 
  <trainPartSequence sequence='1'> 
    <trainPartRef ref='tp_9014_London-Lille' position='1'/> 
  </trainPartSequence> 
  <trainPartSequence sequence='2'> 
    <trainPartRef ref='tp_9014_Lille-Paris' position='1'/> 
  </trainPartSequence> 
</train> 

 
You may think that trc_9014 is unnecessary since it holds no new information compared with 
tro_9014. But there should be poetic justice so if the travellers to Bruxelles get their own 
commercial train… However, please consider that some programmes reading RailML files 
only look for the commercial trains and do not ‘see’ any operational train. It also may be a 
little bit complicated to separate the operational trains which are superset by commercial 
trains from that which are not. So, that’s why there is the rule that each train part normally 
has to be used by exactly one operational and one commercial train. 
 
In general, if we have the situation of train coupling and sharing, there is 
- one ‘long’ operational train running at the section where both parts are coupled, and 

normally, also at one of both ‘branches’, 
- one ‘short’ operational train running at the other ‘branch’, so starting or ending at the in-

termediate station where both train are split or joined, 
- two commercial trains (equal before the law), one for each ‘branch’ but both running 

through the shared section. 
 
In the example above, 
- the ‘long’ operational train is tro_9014, 
- the ‘short’ operational train is tro_9114, 
- the two pari passu commercial trains are trc_9014 and trc_9114. 
 
(Please note that there is no meaning in the id’s. They are just used that way for easier un-
derstanding.) 
 
Additionally, you have to have at least four train parts for this example (tp_9014_London-Lille, 
tp_9114_London-Lille, tp_9014_Lille-Paris, tp_9114_Lille-Bruxelles) which are not shown here 
for shortness. (If you like you’ll find extracts from the train parts in the German example 
above). 
 
As mentioned earlier, there is a difference from the operational and from the commercial 
point of view. There is only one operational train at the “shared section“ (here: London - Lille) 
but two commercial trains. The train number often given at the column’s header of time ta-
bles is not identical to the operational train number (or h’code) of a train. This inconsistent 
usage of the term “train number” is often the reason for misunderstandings: Does the train 
between London and Lille has the number 9014 or 9114? 



 railML® interface 
 Train coupling and sharing 

© iRFP Page 10 Date: 08.12.2014 

 
Example 2 
To seek the US-American example again: They use three operational trains for the same 
situation which makes it even more equal before the law: 
 
<train id='tro_1' type='operational' trainNumber='1'> 
  <trainPartSequence sequence='1'> 
    <trainPartRef ref='tp_01_NewOrleans-SanAntonio' position='1'/> 
  </trainPartSequence> 
</train> 

 
<train id='tro_421' type='operational' trainNumber='421'> 
  <trainPartSequence sequence='1'> 
    <trainPartRef ref='tp_21_SanAntonio-LosAngeles' position='1'/> 
    <trainPartRef ref='tp_01_SanAntonio-LosAngeles' position='2'/> 
  </trainPartSequence> 
</train> 

 
<train id='tro_21' type='operational' trainNumber='21'> 
  <trainPartSequence sequence='1'> 
    <trainPartRef ref='tp_21_Chicago-SanAntonio' position='1'/> 
  </trainPartSequence> 
</train> 

 
Then, we have again the two operational trains. This time I assigned them the name rather 
than a number since the train number is more typical for the operational view: 
 
<train id='trc_SL' name='SUNSET LIMITED' type='commercial'> 
  <trainPartSequence sequence='1'> 
    <trainPartRef ref='tp_01_NewOrleans-SanAntonio' position='1'/> 
  </trainPartSequence> 
  <trainPartSequence sequence='2'> 
    <trainPartRef ref='tp_01_SanAntonio-LosAngeles' position='2'/> 
  </trainPartSequence> 
</train> 

 
<train id='trc_TE' name='TEXAS EAGLE' type='commercial'> 
  <trainPartSequence sequence='1'> 
    <trainPartRef ref='tp_21_Chicago-SanAntonio' position='1'/> 
  </trainPartSequence> 
  <trainPartSequence sequence='2'> 
    <trainPartRef ref='tp_21_SanAntonio-LosAngeles' position='1'/> 
  </trainPartSequence> 
</train> 

 
Well, now imagine: The Sunset Limited takes about 15 hours from New Orleans to San An-
tonio, leaving New Orleans about noon on Mondays, Wednesdays, and Fridays. The Texas 
Eagle takes about 30 hours from Chicago to San Antonio, leaving Chicago in the afternoon 
of Wednesdays and Saturdays. At which position of train #421 is train part #tp_01 from San 
Antonio to Los Angeles on Thursdays? Do they meet in San Antonio at all? 
 
This shows how difficult real-world examples with train parts may become in conjunction with 
operating days and midnight-overrun and leads us to the next topics: Operating days and 
midnight-overrun. 
 



 railML® interface 
 Midnight overruns in RailML 

© iRFP Page 11 Date: 08.12.2014 

 

Midnight overruns in RailML 
There are several possibilities to indicate midnight overruns correctly in RailML: 

• Using the attributes arrivalDay and departureDay 
• By splitting the train’s run into <trainPart>s before and after midnight and chang-

ing <operatingPeriodRef> between these <trainPart>s… 
a) …and using the attribute dayOffset at the <operatingPeriod> after midnight, 
b) …and using an <operatingPeriod> after midnight which is ‘shifted’ by one 
day. 

Possibility 1 is the one regularly recommended for midnight overruns during a train run in 
RailML. It is explicitly not wanted to break a train’s run into <trainPart>s only because of the 
midnight overrun. However, possibility 2a comes into consideration for a midnight overrun 
before the current train run (see example below). Possibility 2b shall be avoided. 
 
Midnight overruns inside the current train's route 

The attributes arrivalDay and departureDay are intended for midnight overruns during one 
train run. They are a counting of the number of midnight overruns relatively to a reference 
place (e. g. departure, see below). These attributes are optional with default value 0, e. g 
they do not have to be written as long as a train didn’t run over midnight. But, after the first 
run over midnight, they must be written with values >0. 
 
Example 1: Midnight overruns during an intermediate stop 
 
<ocpTT ocpRef='ocp_DOLB' ocpType='stop'> 
  <times scope='scheduled' arrival='23:59:49' departure='00:00:19' departureDay='1'/> 
  <sectionTT section='DOLB-DN E' lineRef='ln_80.6212' trackRef='tr_80.6212_2' trackInfo='1'> 
    <runTimes minimalTime='PT48S' operationalReserve='PT1S'/> 
  </sectionTT> 
  <stopDescription commercial='true' stopOnRequest='false'> 
    <stopTimes minimalTime='PT30S'/> 
  </stopDescription> 
</ocpTT> 

 
All further arrival, departure, and run through times of the train until the end of its route are 
marked with arrivalDay=1 and departureDay=1. 
 
Example 2: Midnight overrun while in motion 
 
<ocpTT ocpRef='ocp_DNKW' ocpType='pass'> 
  <times scope='scheduled' departure='23:55:00'/> 
</ocpTT> 
<ocpTT ocpRef='ocp_DNKW_A' ocpType='pass'> 
  <times scope='scheduled' departure='23:55:35'/> 
</ocpTT> 
<ocpTT ocpRef='ocp_DNKO' ocpType='stop'> 
  <times scope='scheduled' arrival='23:57:53' departure='23:58:23'/> 
</ocpTT> 
<ocpTT ocpRef='ocp_DWT_N' ocpType='pass'> 
  <times scope='scheduled' departure='00:01:25' departureDay='1'/> 
</ocpTT> 
<ocpTT ocpRef='ocp_DWT' ocpType='stop'> 
  <times scope='scheduled' arrival='00:02:17' arrivalDay='1' departure='00:03:00' 

 departureDay='1'/> 
</ocpTT> 

 
Reference place for day counting / midnight overruns 

 It is intended that the arrival/departureDay counting starts with 0 at the first departure of 
a train. 

 Therefore, the value -1 can occur in rare cases of an arrival before the first departure 
(“arrival from nowhere”, from outside the scope of the RailML file). 

here midnight overrun 

here midnight overrun 



 railML® interface 
 Midnight overruns in RailML 

© iRFP Page 12 Date: 08.12.2014 

 If a <train> consists of several <trainPart>s which are sequentially linked, the day count-
ing normally refers to the first departure of the whole <train>. So, it may happen that 
single <trainParts> already start with day counting >0. 

 A “back-jump” of the day counting may happen especially from the view of a commercial 
train (<train> with type=’commercial’): This means that the train first refers to <trainPart>s 
which did run over midnight and later refers to <trainPart>s which did not run over mid-
night. See example below. 

 
There are three trains (red, green, and blue) which are ‘broken’ into at least nine train parts 
at the black towns. In the run of the green and blue train there is a ‘back-jump’ of the day 
index at Berlin (arrDay=1 to depDay=0). This back-jump normally* comes along with an ap-
parent change of operating day (Monday to Tuesday: operatingPeriodRef changes); both 
phenomena together make it to ‘Monday +1’ to ‘Tuesday +0’. 
 
* ‘Normally’ as there wouldn’t be an apparent change of operating day if the trains would op-
erate daily. 
 
Do you ask whether there is no such “back-jump” at the Warsaw’s route section? There 
could be. For this example, it is assumed that there is one through operational train from 
Amsterdam to Warsaw (train #1). Since this begins in Amsterdam before midnight, its day 
offsets refers to the Amsterdam departure so that the train arrives in Warsaw with arrival-
Day=+1 but without back jump. At the Prague branch, in contrast, it is assumed to be a new 
operational train starting from Berlin (train #3). Its start with departureDay=0 already happens 
after midnight, hence the back-jump. 
 
Meaning of the day counting / midnight overruns 

 The operating day reference (<operatingPeriodRef>) cannot be interpreted alone. This is 
only possible by including the corresponding day index (arrival/departureDay). To discov-
er at which days a train actually runs it may be necessary to shift the bit mask (from <op-
eratingPeriod>) by the number of bits from (arrival/departureDay + dayIndex). 

 Whether a change of operating days during a train run actually happens can only be ob-
tained by comparing the shifted bit masks. A change of <operatingPeriodRef> alone is 
not necessarily a change of the actual operating days. 

 There are any numbers of combinations of <operatingPeriod> and arrival/departureDay 
which are semantically identical, e. g. they effectively describe the same days. 

 A writing software is free to choose any combination; it can even change the combination 
inside one train. 



 railML® interface 
 Midnight overruns in RailML 

© iRFP Page 13 Date: 08.12.2014 

 
Summary: Combinded example with arrival/departureDay and <dayOffset> 

The aim of the following example is to show the two general possibilities of “coaction” of arri-
val/departureDay and <dayOffset> in context. 
 
Please not that both a and b describe the same train in content. Both <trainPart>s sequen-
tially define the train: <trainPart> “tp_1_of_train_1” from A to C, <trainPart> “tp_2_of_train_1” 
from C to E. 
 
a) …first with one <operatingPeriod> only: 
 
<trainPart id='tp_1_of_train_1'> 
  <operatingPeriodRef ref='opp_1'/> 
  <ocpsTT> 
    <ocpTT ocpRef='ocp_A' ocpType='begin'> 
      <times scope='scheduled' departure='23:45:18' departureDay='0'/> 
    </ocpTT> 
    … 
!-- here midnight overrun --! 
    <ocpTT ocpRef='ocp_C' ocpType='end'> 
      <times scope='scheduled' arrival='00:30:40' arrivalDay='1'/> 
    </ocpTT> 
  </ocpsTT> 
</trainPart> 
 
<trainPart id='tp_2_of_train_1'> 
  <operatingPeriodRef ref='opp_1'/> 
  <ocpsTT> 
    <ocpTT ocpRef='ocp_C' ocpType='begin'> 
      <times scope='scheduled' departure='00:31:18' departureDay='1'/> 
    </ocpTT> 
    … 
    <ocpTT ocpRef='ocp_E' ocpType='end'> 
      <times scope='scheduled' arrival='00:45:40' arrivalDay='1'/> 
    </ocpTT> 
  </ocpsTT> 
</trainPart> 
 
<operatingPeriod id='opp_1' name='Mon-Fri' timetablePeriodRef='…' 
  bitMask='011111001111100…00111110'> 
    <operatingDay operatingCode='1111100' /> 
</operatingPeriod> 

 
The midnight overrun is expressed by the attributes arrival/departureDay only. There is only 
one <operatingPeriod> necessary for this example, the attribute dayOffset is not used. 
 
b) …with two <operatingPeriod>s and the attribute dayOffset: 
 
<trainPart id='tp_1_of_train_1'> 
  <operatingPeriodRef ref='opp_1'/> 
  <ocpsTT> 
    <ocpTT ocpRef='ocp_A' ocpType='begin'> 
      <times scope='scheduled' departure='23:45:18' departureDay='0'/> 
    </ocpTT> 
    … 
    <ocpTT ocpRef='ocp_C' ocpType='end'> 
      <times scope='scheduled' arrival='00:30:40' arrivalDay='1'/> 
    </ocpTT> 
  </ocpsTT> 
</trainPart> 
 
<trainPart id='tp_2_of_train_1'> 
  <operatingPeriodRef ref='opp_2'/> 
  <ocpsTT> 
    <ocpTT ocpRef='ocp_C' ocpType='begin'> 
      <times scope='scheduled' departure='00:31:18' departureDay='0'/> 
    </ocpTT> 
    … 
    <ocpTT ocpRef='ocp_E' ocpType='end'> 
      <times scope='scheduled' arrival='00:45:40' arrivalDay='0'/> 
    </ocpTT> 
  </ocpsTT> 
</trainPart> 
 
<operatingPeriod id='opp_1' name='Mon-Fri' timetablePeriodRef='…' 
  bitMask='011111001111100…00111110'> 
    <operatingDay operatingCode='1111100' /> 
</operatingPeriod> 



 railML® interface 
 Midnight overruns in RailML 

© iRFP Page 14 Date: 08.12.2014 

 
<operatingPeriod id='opp_2' name='Mon-Fri after midnight' timetablePeriodRef='…' 
  bitMask='011111001111100…00111110' dayOffset='1'> 
    <operatingDay operatingCode='1111100'/> 
</operatingPeriod> 

 
The deciding difference is: In example b both <trainPart>s start with departureDay='0' where-
as in example a the second <trainPart> starts with departureDay='1'. 
 
Midnight overruns outside the current train’s route 

Normally it is intended – for several applications even necessary – that a train starts with 
arrival/departureDay counting from 0 from the first departure actually given (in the RailML 
data). 
 
Therefore, it is no more possible to use departureDay >0 in case a train did already run over 
midnight before the first departure (in the RailML data). So, it would only be possible to de-
scribe the operating days shifted by the days the train run over midnight before (which is 
possibility 2b in the list at the beginning). 
 
This solution is explicitly not wanted because of the following reasons (inter alia): 
 Timetable periods are normally not ‘closed’, i.e. after the last day of a timetable period did 

not follow the first day again. A train running daily in a timetable period and running over 
midnight does not run daily after midnight, strictly speaking: It does not more run at the 
first day of the period but instead it does run at the first day after the timetable period. 
The bit mask of its operating days (<operatingPeriod>.bitMask) is shifted by one bit in the 
direction of raising dates, i.e. even the daily-bitmask containing only 1s before will then 
start with a 0. 

 For several <operatingPeriod>s which are often used for passenger information it may be 
very difficult to find (understandable) text expressions if they would be shifted by one or 
more days. 

 
Because of these reasons, the attribute {{TT:Tag|operatingPeriod}}.{{Attr|dayOffset}} has 
been introduced from RailML 2.2 onwards. 
 
<operatingPeriod id='opp_1' name='daily' 

description='runs daily' 
timetablePeriodRef='ttp_2020_21' 
bitMask='111…111'> 

  <operatingDay operatingCode='1111111'  
startDate='2020-12-13' 
endDate='2021-12-11'/> 

</operatingPeriod> 
<operatingPeriod id='opp_2' name='daily +1'  

description='runs daily after midnight'  
timetablePeriodRef='ttp_2020_21'  
bitMask='111…111'  
dayOffset='1'> 

  <operatingDay operatingCode='1111111'  
startDate='2020-12-13'  
endDate='2021-12-11'/> 

</operatingPeriod> 

 
The bit mask of the <operatingPeriod>s with dayOffset≠0 is not to be shifted, i.e. it is identi-
cal to the case dayOffset=0. 
 
Basically, there is the possibility (which is principally equal) in such cases to start with arri-
val/departureDay>0 instead of dayOffset>0 even at the first <ocpTT> of a train. A reading 
software should be able to parse both versions. The version with dayOffset>0 is intended for 
cases where departureDay=0 is enforced by external reasons. However, this is also the rec-
ommendation of the RailML consortium. 



 railML® interface 
 Header information (Dublin Core Metadata Element Set) 

© iRFP Page 15 Date: 08.12.2014 

 

Header information (Dublin Core Metadata Element Set) 
The following examples contain a recommendation for the usage of Dublin Core (DC) 
Metadata Element Set of rail:metadata (the head element collection of a RailML file). It is at 
the moment not necessary to use the DC elements in this way. But since it is not useful for 
an exchange of data if the same attribute has different meanings it is strongly recommended 
to use the DC elements in that way. 
 
<railml version='2.0' … > 
  <metadata> 
    <dc:format>2.0.3</dc:format> 
    <dc:identifier>1</dc:identifier> 
    <dc:language>1252  (ANSI - Lateinisch I)</dc:language> 
    <dc:source>iPLAN.exe V1.2.0.528 NtzIntf_RailML2.dll V2.0.4.23</dc:source> 
    <!--created with FBS (www.irfp.de) iPLAN.exe V1.2.0.528 NtzIntf_RailML2.dll V2.0.4.23--> 
    <dc:date>2012-03-01T11:14:59</dc:date> 
    <dc:creator>iRFP</dc:creator> 
  </metadata> 
 
The attribute railml.version shall contain the „Marketing Version“ the scheme files were pub-
lished with. Typical values are currently 2.0, 2.1 and 2.2. 
 
The Dublin Core Metadata Element Set (name space „dc:“, structure railml.metadata) is 
intended for implementation-depending version numbers and other header information. 
 
The element metadata.format contains the internal version number of the scheme occur-
rence (also called RailML profile). This version number changes if the interpretation of the 
scheme by the writing software changes. A reading software should check whether this ver-
sion number is equal or higher than the version number it was tested with. A reading soft-
ware also can easily check with this number whether will be some special values which are 
 - necessary for the reading software, 
 - optional in RailML, 
 - obligatory in the specific scheme instance. 
It is a matter of the writing software to assign the values for metadata.format. Therefore, the-
se values can only be interpreted correctly together with metadata.source. It is recommend-
ed to align them at the official RailML scheme version this implementation is based on. (In 
the example above: Instance no. #3 of RailML 2.0.) Also it is a matter of the writing software 
to secure that there are only unique combinations of metadata.format and metadata.source. 
 
The element metadata.identifier contains a compatibility number as a simple integer value. 
This number only changes if the interpretation of an already existing value (attribute or ele-
ment) changes after its first release (mostly following of an error correction). A reading soft-
ware should check this value against a certain expected value - otherwise it risks that the 
data fields do no more contain the expected contents. 
 
For an example, an attribute for speed values could contain speeds in km per hour. This con-
fesses to be not conform to RailML. To provide RailML conformity, this attribute would have 
to be changed to meters per second - without to be renamed. In this case metadata.identifier 
would be increased by one to avoid that reading programme which do not know this change 
read it as kph. 
 
The element metadata.identifier will not be changed if new data are added to a scheme. This 
is the main difference to metadata.format. It is expected that metadata.identifier changes 
very seldom compared to metadata.format. 
 
The element metadata.source contains a string describing the writing software in a unique 
matter. Optionally, there may be version numbers to ease error detection. 
 



 railML® interface 
 Header information (Dublin Core Metadata Element Set) 

© iRFP Page 16 Date: 08.12.2014 

The element metadata.language contains number and (optionally) name of the character 
set (codepage) the data belongs to. This value is of importance in case the containing 
Unicode names (station names a.s.o.) have to be converted into a non-Unicode-string by the 
reading software. 
 
This value is not to be mixed with <?xml ... encoding='UTF-8' ?> which defines the coding of 
the RailML file (and all of its characters). Since a RailML file is normally coded in UTF-8 the  
value of metadata.language is not necessary for pure reading. It is only necessary if the 
names have to be converted into a non-Unicode-string for the final target software. A reading 
algorithm shall not need to ‘scan’ the names for special characters which would mean a more 
empirical solution. 
 
For example, in case of <dc:language>1253  (ANSI - Greek)</dc:language> a reading programme 
could - without this statement - only recognise that there are obviously Greek names by rec-
ognising strange Unicode-(UTF-8-)values. If a writing programme does not know the origin of 
the names it shall skip the attribute metadata.language. 
 
metadata.language shall contain as its first characters - until a separating space - the 
codepage number as decimal numerical value. After that, there may be optionally the name 
of the codepage. 
 
The element metadata.date contains date and time of export (creation of the RailML file) in 
xs:dateTime format. 
 
The element contains optionally the user name oder licence name of the user or licence used 
to create the file (e. g. login name of operating system or company name the writing software 
is licensed to). 
 



 railML® interface 
 Header information (Dublin Core Metadata Element Set) 

© iRFP Page 17 Date: 08.12.2014 

 


	Theme overview
	Different stop types
	Different station names
	Train types, categories, products, and passenger usage
	Mileage of tracks and lines
	On trains and train parts in general
	Train coupling and sharing
	Midnight overruns in RailML
	Header information (Dublin Core Metadata Element Set)

